Biocompatibility and Favorable Response of Mesenchymal Stem Cells on Fibronectin-Gold Nanocomposites
نویسندگان
چکیده
A simple surface modification method, comprising of a thin coating with gold nanoparticles (AuNPs) and fibronectin (FN), was developed to improve the biocompatibility required for cardiovascular devices. The nanocomposites from FN and AuNPs (FN-Au) were characterized by the atomic force microscopy (AFM), UV-Vis spectrophotometry (UV-Vis), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility of the nanocomposites was evaluated by the response of monocytes and platelets to the material surface in vitro. FN-Au coated surfaces demonstrated low monocyte activation and platelet activation. The behavior of human umbilical cord-derived mesenchymal stem cells (MSCs) on FN-Au was further investigated. MSCs on FN-Au nanocomposites particularly that containing 43.5 ppm of AuNPs (FN-Au 43.5 ppm) showed cell proliferation, low ROS generation, as well as increases in the protein expression levels of matrix metalloproteinase-9 (MMP-9) and endothelial nitric oxide synthase (eNOS), which may account for the enhanced MSC migration on the nanocomposites. These results suggest that the FN-Au nanocomposite thin film coating may serve as a potential and simple solution for the surface modification of blood-contacting devices such as vascular grafts.
منابع مشابه
Co-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds
Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...
متن کاملEx Vivo Expansion of Umbilical Cord Blood Hematopoietic Stem Cells on Collagen- Fibronectin Coated Electrospun Nano Scaffold
Background and Objective: Umbilical Cord blood (UCB) hematopoietic stem cell (HSC) transplantation is a therapeutic approach for the treatment of malignant and non-malignant hematologic disorders due to ease of collection, lack of risk for donors and lower levels of infection. Moreover, it is considered a good alternative for bone marrow HSC transplantation. The main limitation of their use is ...
متن کاملIn Vitro Study of a Novel Nanogold-Collagen Composite to Enhance the Mesenchymal Stem Cell Behavior for Vascular Regeneration
Novel nanocomposites based on type I collagen (Col) containing a small amount (17.4, 43.5, and 174 ppm) of gold nanoparticles (AuNPs, approximately 5 nm) were prepared in this study. The pure Col and Col-AuNP composites (Col-Au) were characterized by the UV-Vis spectroscopy (UV-Vis), surface-enhanced raman spectroscopy (SERS) and atomic force microscopy (AFM). The interaction between Col and Au...
متن کاملMesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles
Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...
متن کاملLabeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications
BACKGROUND Nanoparticles' unique features have been highly explored in cellular therapies. However, nanoparticles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of...
متن کامل